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Abstract. A formalism is derived for describing both magnetic correiations and atomic shoe- 
range order (ASRO) in the panmagnetic state of a magnetic alloy. It is based on a ‘fint- 
principles’. finite-temperature, electronic density-functional, meann-field p d  potential of the 
random alloy in which the thermally induced spin fluctuations are modelled in t e m  of ‘local 
moments’. For proper comparisoq, calculations based on this work should be tested against data 
from experiments on samples at ‘high temperature‘ (either in situ or npidly quenched). The 
calculated ASRO cm be compared to any atomic diffuse-scanering data, whereas the calculated 
magnetic correlalions must be compared to polarized-neutron diffuse-scattering dam 

1. Introduction 

Over the past decade or so, the problem of the nature of the paramagnetic state of itinerant 
magnetic metals has been solved to some extent, at least in principle [Z]. A picture of 
itinerant electrons moving in the fields set up by spin fluctuations whose orientational 
degrees of freedom slowly vary has proved useful. This arises from the assumption that, on 
a time scale, 5 ,  long compared to an electronic ‘hopping’ time, the spins of the electrons 
are sufficiently correlated to leave the magnetization (averaged over this time r and over a 
unit cell in the crystal lattice) non-zero. The orientations of these local magnetizations, [&I,  
vary slowly while their magnitudes fluctuate rapidly on the time scale z. The magnitude of 
the average magnetization on a site k is defined as the local moment, pa = p~( { i $ ] ) ,  and it 
changes with the orientational configuration. Whilst this basic scenario is broadly accepted 
to be capable of providing an adequate description of many metal magnets at elevated 
temperatures, an assessment of the severity of the neglect of the dynamical effects of the spin 
fluctuations, an aspect emphasized by several people [3-5], has not been made. Assuming, 
however, the validity of this static ‘local-moment’ description of the paramagnetic state of 
itinerant magnets, there remains a long-standing controversy concerning which orientational 
configurations of the moments are the most important. To date most work on this issue has 
focused on the pure 3d transition-metal magnets so in this article we bring the discussion 
around to alloys where the scope for testing the various models of the parmagnetic state 
is much greater. 

The various approaches can be roughly partitioned into two. Firstly, there is the picture 
of the ‘fluctuating-local-band’ (m) theory [6] of a large amount of short-range magnetic 
order even in the paramagnetic phase. This consists of large spatial regions in which the 
local moments are nearly aligned, i.e. where the orientations vary gradually. In these regions 
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conventional Stoner theory can be applied and perturbations to it made. The quasi-elastic, 
neutron-scattering experiments of Ziebeck et al [7], later confirmed by Shirane eta1 [SI, are 
given a simple though not uncontroversial [9] interpretation by this picture. In the case of 
inelastic neutron scattering, however, even the basic observations are controversial, let alone 
their interpretation in terms of ‘spin waves above T,’ that may feature in such a model. In 
the mB model, it is difficult to carry out ‘first-principles’ calculations in which both the 
magnetic and electronic sbxctures are mutually consistent and consequently to examine the 
Full implications of the model and to improve it systematically. 

The second type of approach refers to ‘disordered local moments’ (DLM) [9-111 and 
here the local moments are commonly thought to fluctuate Fairly independently. This 
picture was first set up by assuming a Hubbard Hamiltonian, transforming the partition 
function Z for the system of interacting electrons into a functional integral over fluctuating 
fields to which non-interacting electrons are coupled and making static and single-site 
approximations. Hasegawa has extended this framework to alloys 1121. Gyorffy et al 
[ 131 set up a ‘first-principles’ theory based on a generalization of spin-density-functional 
(SDF) theory which incorporated the effects of orientational spin fluctuations. A scheme for 
carrying out calculations consistent with a DLM picture was described and results given for 
iron and nickel [14,15]. The DLM approach was described as a mean-field theory and it 
was shown how, in principle, it can be improved systematically. 

A scenario in between these two limiting cases has been proposed by Heine and Joynt 
[I61 and Samson [17]. They too were guided by the apparent substantial magnetic SRO 
above Tc in Fe and Ni deduced from neutron-scattering data and they emphasize how the 
orientational magnetic disorder involves a balance in the free energy between energy and 
entropy. This balance is delicate and requires a consistency to be maintained between 
the magnetic and electronic structures. Heine and Joynt show that it is possible for the 
system to disorder on a coarser than atomic length scale. Luchini and Heine [IS], however, 
determined effective ‘local-moment’ interactions for BCC Fe from the basis of full spd tight- 
binding calculations for various random orientational configurations. Self-consistency with 
respect to the sizes of the local moments was not sought. The interactions, including many- 
atom interactions, were used to fit a Hamiltonian for a Monte Carlo simulation by Chana et 
a1 [19] who concluded that the large SRO inferred from quasi-elastic neutron-scattering data 
[7] could not be explained by electronic-structure calculations based on static orientational 
configurations. 

In the light of some of these issues, we describe an extension of the ‘first-principles’ DLM 
work to compositionally disordered alloys in this paper and we also detail how the atomic 
short-range order (ASRO) can be affected by the magnetic fluctuations so that measurements 
of x-ray and the nuclear component of neutron scattering can be used to test not only the 
ASRO deduced from the theory but also the description of the paramagnetic state of these 
alloys itself. 

Earlier work [13-151 in which the DLM picture was implemented presented results of 
explicit calculations for BCC iron of the magnitudes of the local moments, (p;(&])& = 
CL;(&) = f i  = 1 . 9 1 ~ ~  where the partial average ( p , { & ) ) c  means the average over all 
configurations with the specific orientation a; at the site i. Tc was estimated to be 1280 K and 
the uniform paramagnetic susceptibility followed a CurieWeiss behaviour [ZO]. A ‘local 
exchange splitting’ was predicted for the underlying electronic structure of the paramagnetic 
phase confinned to some extent by experiment While all these theoretical results compared 
favourably with experimental measurements, for nickel, fi  was found to be zero and the 
theory reduced to the conventional Stoner model with all its shortcomings including a 
Curie temperature of - 3000 K. As noted by Sandratski and Kubler [21] and others, the 
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magnitudes of the ‘local moments’ in Ni depend strongly upon the the orientations of their 
surrounding moments and so a mean-field average provided by the DLM approach of this 
quantity turns out to be zero. 

Recently [22] the ‘first-principles’ theory has been improved substantially by 
incorporating the idea of Onsager cavity fields to deal with the effects of correlations 
between the local moments in an approximate way. Tc for iron is now estimated at 1015 K 
(experimental value 1040 K) and the spin comelation length as a function of temperature 
extracted from the wave-vector-dependent Susceptibility compares well with the values 
quoted by Shirane et al [SI from an interpretation of the neutron-scattering data. The 
description of the paramagnetic state of Ni also fits in with similar data and, moreover, the 
estimated Curie temperature is now 450 K and in fair agreement with the experimental value 
of 660 K. The uniform susceptibility also follows a CurieWeiss behaviour in agreement 
with experiment, a feature which had been lacking hitherto. 

In summary, the application of the theory to the paramagnetic state of iron and nickel 
found that iron can be related superficially to a Heisenberg model whereas nickel can be 
analysed in terms of traditional Stoner theory, although the magnetic fluctuations have 
drastically renormalized the exchange interaction and lowered T,. This relative success 
has prompted the extension described in this paper to compositionally disordered alloys. 
The expectation is that this theoretical treatment should enable a reasonable ‘first-pass’ 
description of their paramagnetic states to be made. 

In the next section, we describe our theory for the paramagnetic state of compositionally 
disordered alloys, in which the magnetic fluctuations are modelled in terms of slowly varying 
orientational ‘transverse’ components whose sizes vary on the faster time scale and depend 
upon the orientational environment. A theory for the wave-vector-dependent susceptibility 
is presented and related to the magnetic correlations inherent in the paramagnetic phase. An 
analysis of the sorts of effect that might be encountered by this approach in various transition 
metal alloys is given. The following section sets out the theory for the compositional 
correlations and therefore atomic short-range order in these alloys. In a companion paper, 
II [I], we describe the first application of the formalism. Explicit calculations are presented 
for MnlsCugs, which forms a ‘spin glass’ at low temperatures. The final section draws 
some conclusions from the work as a whole. 

2. Magnetic correlations in the paramagnetic state of alloys 

In this section we present the details of our theory for describing the growth of magnetic 
correlations in an alloy as it is cooled from high temperatures. The alloy is assumed to 
be uniformly compositionally disordered throughout-in other words the rate of cooling 
is sufficiently fast that little atomic diffusion can take place. We consider a binary alloy, 
&CBI-,, where c describes the concentration of the A species when averaging over all 
possible arrangements of A and B atoms. The basic physical insight underlying much recent 
work on metallic magnetism and described in the introduction assumes that it is possible to 
identify fast and slow motions in the interacting electron system. Let us consider a particular 
distribution of nuclei on the lattice [ E ; ] ,  where E j  = 1 (or 0) if site i in the lattice is occupied 
by an A (or B) atom. On a time scale, r ,  long in comparison with the electronic hopping 
time @/ W N s, where W represents a relevant band width) but short when compared 
with an appropriate ‘spin fluctuation’ time @/OSF N s, where OSF characterizes a 
typical spin fluctuation frequency), the correlation between spin orientations of electrons 
leaving a site set up a finite magnetization, Mz(rj,  (ti}), if this quantity is averaged over 
the time 5 .  The orientations of these ‘local moments’ vary slowly on this time scale. 
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The many-electron system, while ergodic, is assumed not to cover its phase space 
uniformly in time and can be imagined as being restricted for long times r near points 
in its phase space which can be labelled by particular orientational arrangements of the 
local moments and then moving rapidly to another point in phase space. Each orientational 
arrangement of this alloy with a compositional structure labelled by (ti] can be annotated 
by the set of unit vectors ( d i ]  picking out the orientations of the local moments. 

where Vi is the volume of the ith unit cell, and rj = ri - Rj and Ri is a lattice vector. 
A generalization of the spin-density-functional theory [13] provides a short time (<< e) 
description of the system labelled by ( O i )  in terms of a 'generalized' grand potential 
a(&}, (&I)  which is followed by a prescription for the corresponding time evolution of 
the system in the reduced phase space of such configurations. 

By generalizing the finitetemperature SDF theory [13,23] one can write down formally 
that Q((g}, (Si)) is obtained as a result of a functional minimization of the grand-potential 
functional 

+ Z[P, MI - TSJP,  MI + Q X J P ,  MI (2) 

with Ts and S, being respectively the kinetic energy and entropy of a system of non- 
interacting electrons with densities p ( r )  and M ( r )  at a temperature T .  Vext((&}) describes 
the particular arrangement of nuclei under study. As is well known, this functional 
minimization can be achieved from the solution of appropriate single-electron Kohn- 
Sham equations. The functional minimization in this problem, where the slowly varying 
spin fluctuations have been separated out, is canied out subject to the constraint that the 
magnetization on every site is orientated consistently with (b i ] ,  i.e. Jv, d r i M ( r i ,  ( S i ) )  x bj 
= 0. By incorporating Lagrange multipliers, the minimization closely follows conventional 
SDF theory. 

The long-time averages appropriate to the second stage of the scheme can be evaluated 
by taking averages over the ensemble of orientational configurations (e$} with measure 

p( { t i l ,  lei)) = exp[-bQ((t)+ (&))I n d 4  expI-fiW5j1, (6jI)l. (3) 

The free energy is found from F ( & }  = - (1 /b ) Inn iJdbjexp( -6Q((~ j j , (~ , } ) ) .  The 
role of a classical 'spin' (local-moment) Hamiltonian, albeit a highly complicated one, 
is played by Q ( ( t j ) ,  (b j}) .  By choosing a suitable reference 'spin' Hamiltonian, QO = xi  mi(&) and expanding about it using the Feynman-Peierl-Boguliubov inequality [24], 
an approximation to the free energy is obtained and a mean-field theory constructed. The 
Feynman-Peierl-Boguliubov inequality is given by F < FO + (S2 - Qo)" = k with FO = 
-(l/b) In nj S ddj exp(-bQo), and, for any quantity X, 

I J  

( X l 0  = n / d 6  J'o((&f)X((&l). (4) 
i 

Here, wi(bj)  is given by (Q((t). [$)))e,=< in which the orientations of the local moments 
on all the sites (apart from site i)  are averaged over, On site i ,  the moment is constrained to 
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point along 6;.  Details have been discussed elsewhere 1131 for the case of pure metals. In 
principle, this analysis should be repeated for every configuration of nuclei (5 ; )  and suitable 
averages made, consistent with the requirement that, for the high-temperature disordered 
state, sites are occupied by A nuclei with probability c and the remainder by B with 
probability (1 - c). 

Here, in order to construct a tractable scheme, the coherent potential approximation (CPA) 
[25], is used to average the electronic motion over both the ‘local-moment’ orientations and 
the compositional configurations. This provides a single-site averaging scheme for (4). We 
assume that each site is randomly occupied by A or B nuclei such that a fraction c of the 
sites are occupied by A nuclei. But in the event that a particular site i is occupied by an A 
nucleus, it has a chance 

of its local moment pointing dong &i(Po(($i) = n , [ P i . ~ ( & i )  + Pi,~(bi)l) .  c = 
JdBi Pi .~(b i )  and (1 - c) = J d &  P~.B(&). An inhomogeneous version of the CPA is 
required in that the effective CPA medium can be different from site to site reflecting 
the inhomogeneous probability distribution P~.A (B)(&) [26,27]. Now the solution to the 
Kahn-Sham equations can be written down in terms of an effective single-electron Green 
function accessible from the self-consistent-field, Koninga-Kahn-Rostoker, electronic- 
multiple-scattering theory in combination with the coherent potential approximation ( S C F  
KKR-CPA) [28,29]. This approach was designed originally for non-magnetic, binary alloys 
but here we use a generalization so that the orientational arrangements of the local moments 
are also averaged over. It follows that we have charge and magnetization densities 
apportioned to each site 

~ i , ~ ( r i .  Si) = -- Im dc f(c - ue)Tr(G(ri, ri; ~ ) ) g , ~ i  (6) 

Mi,*(r,, 6;)  = --Im dcf (c  - u,)diTr(u.BiG(ri,ri;~))~,.,i =pi,.(&)& (7 1 

x ‘ J  
R l J  

where 01 denotes whether an A or B atom is located on that site. U, is the electronic chemical 
potential, G represents a KohnSham Green function expressed as a 2 x 2 matrix, and U is 
the usual set of Pauli’s spin matrices. 

At temperatures well in excess of any magnetic ordering temperature Tc, there is an 
equal chance of a moment being orientated in any given direction on a site i (therefore, 
P i , ~ ( % j )  = c/4a,  P i , ~ ( 8 ; )  = (1 - c)/4x and  pi,^ ( ~ ) ( d i )  = ,?.A (6)) and so there is zero 
magnetization overall, i.e. 

Mi = &i(Pi,~(&i)L(i ,~(&i) + ( I  -C)pi,B(&i))d&i = - 4R &~(C,?.A+ (1 - C ) b ~ ) d & i  = 0. 

(8) 

Nonetheless, local moments ,?.A and ,?.B and therefore ‘local exchange splitting’ can exist in 
this paramagnetic state [13]. The S m - m < P A  methodology delivers a description of this 
paramagnetic, disordered-local-moment (DLM) state of alloys. The local exchange splitting 
can introduce important features in the electronic structure of these alloys which would not 
be present in a conventional Stoner-type description of their paramagnetic state [15,30]. 
Experimental probes of the electronic structure can therefore be used to test the validity of 
this DLM model of the important spin fluctuations in the paramagnetic state. 

s ‘ S  
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The formal representation of the charge and magnetization densities (equations (6) and 
(7)) within multiplescattering formalism of the SCFKKR-CPA method is described briefly 
in appendix A, which uses the notation of Faulkner and Stocks [31]. We refer the reader to 
this appendix for particular details. This approach connects the properties of the underlying 
electronic structure to those of the macroscopic system and allows us to require only the 
atomic numbers of the constituents of the alloy as input into our subsequent calculations. 

Accepting that we can calculate the Green function of equations (6) and (7). we now 
move on to our main focus of magnetic correlations. This is based on a theory for the 
paramagnetic, static, spin susceptibility of the system, x(q. T), in which the response of 
the system to a small, inhomogeneous magnetic field is considered. The technical details are 
a generalization to those used to derive an expression for the paramagnetic susceptibility 
of a pure metal which have been described fully elsewhere [15,22]. A small magnetic 
field {hi) is applied to the paramagnetic system. This induces small deviations {sPi.~(&)}, 
{8Pj,B(&i)] from the equilibrium single-site distribution functions PtA(&t) = cj4n and 
P&(t?i) = (1 - c)/4n and to the sizes of the local moments {Sp i .~ ) ,  {Sp i ,~ ) .  As a 
consequence, the local magnetization, Mi ,  after averaging over nuclear conligurations may 
be written as 

- ') /&Spi,A(&)d& 4- C,%A &SP:(&)d& s C 
M. I - - - /" 6.8 I lIr.A(&i)d$ . + 7 4n 

+ ( I  - ~ ) f i ~ / & S P ? ( & ) d & i  

= Cpi .A + (1 - C)pi.B f f i i . A m i , A  f fii.Bm8.B (9) 

and correspondingly the susceptibility, xij = aMii/ah?, takes the form 

X" U - - cx!. dj.A + (1 - c)& + cX;.a + (1 - c ) c . , B  = x; + x;. (10) 

Evidently the first two terms in equation (IO) describe how the magnitude of the local 
moments responds to external field, whereas the third and fourth terms describes how they 
tend to align with the field. 

The derivation follows that of Staunton and Gyorffy [22] who incorporated the ideas 
of Onsager cavity fields [33] into a first-principles theory for the paramagnetic phases of 
magnetic metals such that those changes (i.e., [Sp$], (Sp$], [,%,&n:J, and {FB8m!i' ,J,B )) 
that are derived from Mi (the induced magnetization at site i) and, which contribute 
to the setting up of this magnetization, are subtracted out. In other words, corrections 
are introduced that are still compatible with the single-site model and averaging. As a 
consequence, the CPA medium (characterized by the single-site scattering matrices, (k.,}, 
given in appendix A) is altered by the applied magnetic field and the induced inhomogeneous 
magnetization (i.e. ti: N 1;' 1 + St;juz), in such a way that these CPA adjustments, {Jf;;], 
contributing to Mi at a site i also do not contain a component which is directly produced 
by Mi. In this fashion, the treatment of the electronic structure and the description of the 
spin fluctuations are compatible with each other. 

From equations (5) and (7). expressions for the components p~i.~(&i)  and mi.e can be 
written down (with 01 either the A or B species) in the following form: 
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The total wave-vector-dependent susceptibility, x(q), is given from (10) by the sum of the 
four’tems xi(q) ,  &(q). xz(q), and xf;(q). The Onsager cavity corrections A: and A? 
are given by 

A i  = xi’ dq[v~~(q)X~(d + Y & ? ( d d ( d  + YLT(~)XF(Q)/~A f YdLBm(4)X?(Q)/Pd 

(15) 
s 

A! =Xi1Sdg[J , / (4 )X i (9 )+J ,Z(q )X: (g )+Jum~(s )X; (4 ) /bA+J~~(s )g (9 ) /bs l  

(16) 

and thus complete the description of the high-temperature susceptibility in terms of the 
electronic properties. 

In the paramagnetic phase of a ferromagnetic alloy, x(q) is largest at small wavevectors, 
i.e. 141 _Y 0, which is compatible with ferromagnetic correlations. On the other hand, an 
alloy with x(q) peaking at finite values of IqI has anti-ferromagnetic-type correlations which 
may lead to an anti-ferromagnetically ordered state at lower temperatures. The magnetic 
transition temperature Tc is that temperature at which x(q) diverges. 

To illustrate the physical meaning of the above equations we consider some interesting 
limiting cases. In the limit of c = 1, i.e. a pure metal, we obtain the results of Staunton 
and Gyorffy [Z],  where 
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For a rigid-local moment system, Fe being a fairly good example of such a system, 
x(q)  N Xm(q) and J m p ( q ) ,  ypm(q) ,  y”’(q) and xo(q) are all small. Equation (17) 
then has the form of a classical Heisenberg model within the spherical approximation, 
with ‘spins’ of magnitude fi .  On the other hand, in a system such as Ni, where no ‘local 
moment’ is set up on the average in the paramagnetic phase, F = 0 and J”(q) ,  Jm@((q), and 
yPm(q)  also vanish and xm(q) = 0. As such, x(q)  = xp(q)  = x?(q)/[l - yFp(q)  + A p ]  
with A’ = (xE1-I [dqy”(q)X@(q). Note that x(q)  is a product of Stoner exchange 
correlation term and a Pauli susceptibility g(q}. The susceptibility evidently describes an 
enhanced Stoner paramagnet where the exchange-correlation effects have been renormalized 
by the spin fluctuations. The paramagnetic phases of weak itinerant ferromagnets have been 
described in this form by other approaches 13-57. 

For an alloy, i.e. c # 0, in which neither alloying species has a local moment (Ni,Pt,_, 
may be such an example of an alloy system), our expression for the total susceptibility 
becomes essentially a generalization of that for a Stoner paramagnet to alloys. Here, the 
quantities Jg‘, Jay’, Xu, and y$ all vanish and x(q)  = x i ( q )  + xg(q). A third case 
refers to those alloys in which F A  # 0 and p~ = 0 with the B specics showing little 
response to magnetic field. The magnetic response is almost entirely provided by the A 
moments altering their orientations so that the susceptibility has the form of that of a 
classical Heisenberg model in which a fraction c of the sites are occupied by A ‘spins’. 
The quantity J,”(q) represents the lattice Fourier transfonn of .ITAA which describes the 
‘exchange’ interaction between two A atoms occupying site i and j averaged over the 
compositional configurations in the A , B j ,  alloy. Examples are Mn,Cul-, alloys. In the 
low-Mn-concentration region ( c  < 0.25) the local moments are set up almost entirely on 
the Mn sites while the Cu host (as we shall see in the companion paper II [I]) pIays an 
important intermediary role. The Mn moments vary in both magnitude and orientation and 
interact with each other via the Cu host. The nature of these interactions is at least to some 
extent responsible for the ‘spin-glass’ behaviour of Mn,Cul-, alloys at low temperatures. 

Another class of alloy is constituted of two atomic species which both respond strongly 
to the magnetic field although local moments establish themselves only on lattice sites 
associated with one of the species. the A species say. Nickel-rich FCC Fe,Nil-, and iron- 
rich BCC Fe,V,-, alloys may be examples of this type. Here, with B referring to Ni. JSmgm, 
JF’, J:’, JtI, J::. ZB, yA”;; and y;: are all zero. Finally, in alloys with non-zero 
moments on both A and B sites, e.g. Fe,Cor-, alloys, we have a mixture of all effects. 

M F Ling et nl 

3. Compositional correlations in aUoys and their dependence on the nature of the 
paramagnetic state 

Over the past few years, progress has been made in describing trends in phase diagrams 
of alloys from detailed models of their electronic structure 134-391. In the compositionally 
disordered state at high temperatures, the compositional correlations often act as precursors 
to the type of ordered alloy that forms as the alloy is cooled. The framework of concentration 
waves [26,27,40] is ideal for the purpose of describing these correlations. In two recent 
papers [41,42], the details of a theory were provided for the compositional correlations 
based on the electronic structure of the high-temperature random state using the SCF-KKR- 
CPA. The calculated chemical susceptibility, ru(q), (which is the lattice Fourier transform of 
the compositional corrclation function ajj, or Warren-Cowley short-range order parameters), 
can be compared with diffuse x-ray and neutron-scattering data. A tendency for the alloy to 
phase segregate at low temperatures is indicated by “(9) peaking at q = (0, 0, 0),  whereas 
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alloys which tend to order are characterized by or(@ having maximum values at a finite 
q. The particular wave-vector specifies the appropriate concentration wave which describes 
the corresponding ordered structure which is likely to fonn at lower tcmperatures. 

A strength of this work is that the statistical mechanics of the compositional fluctuations 
are dealt with within a ‘mean-field‘ approximation which is consistent with the mean-field 
description of the electronic structure calculated within the inhomogeneous CPA [27,43]. 
Both aspects are improved by incorporating Onsager cavity fields once again. This ensures 
that the diffuse intensity is conserved over the Brillouin zone, atypical of most mean- 
field theories; hence, with this description, the diagonal part of the fluctuation-dissipation 
theorem is obeyed. Although the theory described in [41,42] includes both ‘band-filling’ and 
‘charge-rearrangement’ effects, such as ‘charge transfer’, resulting from the so-called double- 
counting contributions to the energetics, the effects of spin fluctuations were neglected. In 
this section, therefore, we present a generalization to this approach and demonstrate how 
the compositional ordering tendencies in the paramagnetic alloy can be affected by the 
presence of spin fluctuations. If the spin fluctuations are to be modelled in terms of ‘local 
moments’, as discussed in the last section, a local exchange splitting is introduced into 
the paramagnetic electronic structure which may have a profound effect upon the nature 
of the compositional correlations exhibited by the alloy above any compositional transition 
temperature. This provokes a novel suggestion for an experimental test of the models of 
the paramagnetic state in multi-component metallic systems. We propose that diffuse x-ray 
and neutron-scattering measurements of the atomic short-range order (ASRO) in alloys be 
used to test the DLM picture of the paramagnetic state alongside similar scrutinies of other 
models of the paramagnetic state. 

As far as possible, we shall follow the notation of Staunton et al and Johnson et a l  
[41,42] which provide the details of our theory for the compositional correlation function 
of non-magnetic alloys. Our starting point is the separation of electronic and chemical 
degrees of freedom. The electronic motion (including the spin fluctuations generated by 
the many interacting electrons which are particularly relevant here) happens on a time 
scale > s, which is vastly different from the times typically taken for atoms to diffuse 
(seconds to years). It is therefore useful to describe any alloy configuration (whether ordered 
or disordered) in terms of Ising-like, site-occupation variables, (ti}, previously defined. The 
thermodynamic average of ei, i.e. (ti), is then the probability of an A atom being found 
at that site, or the average concentration ci. For a homogeneously disordered alloy at 
high temperatures, cj = c for all sites. We want to predict the type of site-occupational 
correlations which develop to break tbis symmetry as the alloy is cooled. 

In the context of spin-density-functional theory, the grand potential fi({g)) for a 
paramagnetic system of interacting electrons moving in the fields set up by an arrangement 
(ei} of nuclei occupying the sites on a crystal lattice behaves as a Hamiltonian for 
the site-occupational variables. If the paramagnetic system is to be modelled by ‘local 
moments’ in which there is an equal chance of a moment pointing in any direction, the 
fi({t)) = n j ( l / 4 r c ) ~ d 2 ,  CZ(($ i} ,  [&)) where an average is taken over the moments’ 
orientations. The probability of a particular configuration {ti] is then given by P ( ( 6 i ) )  = 
e~p(-@({$~)) /Z where the partition function Z = & exp(-pb((ti]) - U xi &). The 
alloy chemical potential difference, U, preserves the relative numbers of A and B atoms 
(not to be confused with the electronic chemical potential used in defining the electronic 
charge and magnetization densities, as in equations (6) and (7)). We shall assume that 
the compositionally disordered phase is always paramagnetic so that the compositional 
transition temperature is higher than any magnetic ordering temperature. This is not always 
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the case and there are situations where magnetic structure can have a profound effect upon 
compositional ordering tendencies [44]. 

At very high temperatures, the alloy is (assumed to be) homogeneously disordered. This 
provides the reference state for a linear response investigation of the atomic pair correlations 
which grow as the temperature is lowered. The KKR-CPA electronic-structure techniques 
to which we have referred already are then employed to describe this high-temperature 
reference state. If a small, inhomogeneous, 'external' chemical potential, ( S w j ) ,  is applied 
to the homogeneous random state, local variations of the site-occupational probabilities are 
induced and can be calculated from linear-response theory. As a result, the compositional 
correlation function, and the growth of correlations with lowering temperatures, can be 
investigated via the fluctuation-dissipation theorem which connects these responses to the 
atomic pair-correlation function, cyjj = Sc,/Suj = p((&Ej) - (&)(tj)). 

We make use of the Feynman-Peierls-Bogdiubov inequality [a] to estimate the 
free energy of the system F = -(l/p)InZ which results in the 'Hamiltonian' fi({f}) 
being replaced by a mean-field Hamiltonian, Q,((&]) = C,(S(fi)/Scj)& = E, ST 6,. 
The functional S:') can formally be expressed in terms of quantities available from the 
inhomogeneous SCFKKR-CPA. It is now straightforward, within this mean-field approach, 
to find the probability that an A atom is located at a site i, 
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which tends to a uniform c at very high temperatures for a uniform chemical potential 
difference vi = U. By allowing {vi) to have a weak site dependence, i.e. (v i  = w + 6 y ] ,  
we can write down an expression for the induced change to the probability of finding an A 
atom on the site k ,  6Ck, to lowest order in the applied potential. It depends on the changes 
induced on all the other sites, i.e. 

The term in square brackets specifies an analogue of the Weiss field of mean-field theories 
of magnetism. The mean-field treatment can be improved in a similar manner by replacing 
these 'Weiss' fields by Onsager cavity fields [41,42]. Accordingly, the cavity field on a 
particular site i must be chosen such that the variation Sc, on that site no longer includes 
the effects from the induced change of concentration on that site. We find 

where Sty) is the change in concentration on a site j due to the change Scj on the site i. 
Following [41,421, we choose S c p )  to be f f j $ v ~ ~ l y .  Since G U ~ ' ~  is 6ci/(pc(l -c)) from 
the equation above, 8c,!s") = aji8cj/(pc(l - c)). The site-diagonal part of the fluctuation- 
dissipation theorem, q i  = pc(1 - c). is automatically guaranteed by this prescription 

In terms of concentration wave-vectors, following a lattice Fourier transform, we can 
write 
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with 

AC = B C ( 1  - c )  /dsS") (d&h.  (23) 

These are the equations analogous to the Gorsky-Bragg-Williams model [45] although 
altered by the cavity fields. S@)(q) plays the role of the lattice Fourier transform of an 
atomic interchange energy. In the two previous papers [41,42], in common with much 
previous work, we have discussed how it is dependent on various attributes of the interacting 
electron system including the average number of valence electrons, d-electron band width, 
and charge transfer. Most preceding work on this topic has neglected magnetic effects. 
Here we highlight the role of spin fluctuations in the paramagnetic state of alloys. 

In the presence of an applied, inhomogeneous chemical potential {Sui), the concentration 
changes (6ci]  are accompanied by a rearrangement of charge associated with each site, 
(Sp i .~  e)]. and, in a DLM paramagnetic system, also by adjustments to the magnitudes of 
the local moments e)). These alterations are all interdependent as shown in the 
following expressions: 

cavity 6Cj = @ ( I  - c)Su, = @C(l - c ) 6 " y ( { S c j  - k,!""'), (6Pj.A - S p j ~ ) ] ,  

(24) ( S C )  
(6pj.B - @ j , ~ '  1 7  @ P j , A  - 6f i~~2 '12  ( 8 f i j . B  - 6fi$?)) 

6pi.A @)(Ti) = @LA (B) (T i ;  (Scj - & c y ) } ,  (6pj.A - @f:'}- I6Pj.B - &'f:)], 

(25) (SC.) 
(6 f i j .A  - 6 c l j . ~  1 3  (6fij.B - 6@;:)1) 

c )  (Se ) 8fii.A (B)(r i )  = 8pi.A (B)(ri; {acj - JCp)], (6pj.A - bfi f s  {@,.B - 6Pj.i 1 9  

(8fi j .A - 6#2'1, (6fij.B - sfif2'1). (26) 

These expressions show that the charge and local magnetization rearrangements must also 
include the effects of the cavity-field corrections. In terms of response functions (namely, 
ffik = dCi/dvk, Pik,A e) = dPi,A (B)(ri)/d% fiik.A (B) = dfii,A (B)(Ti)/duk), the Onsager 
corrections can be written as S c p )  = cujiSci/(pc(l -c ) ) ,  6 ~ ~ ~ ) ~ ~ )  = pj i ,~  p)Bcj /@c( l  - c ) ) ,  
and Sfif;),, = f i j i . ~  ( ~ ) S c i / ( p c ( l  - c) ) ,  see [41].  

Before an explicit expression for the atomic pair-correlation function, a(q), can 
be written down in terms of the underlying electronic structure of the homogeneously 
disordered, paramagnetic alloy, it is necessary to determine the induced changes to the 
charge densities, 6pi.~ (B)(T,), and to the local moment sizes, S f i j . ~  ( ~ ) ( r , ) ,  which develop 
on each site and vary throughout each unit cell. The spatial forms of these changes must be 
obtained from the self-consistent-field formalism and not by imposing a particular functional 
form for the spatial variation, ri, in each unit cell. A computationally cost-effective method 
is set up by expanding the { 6 p j , ~  (B)] in terms of a small set of basis functions, f.(rj), so 
that S p i , ~  (B)(T~) = 6pcA e)fn(ri) and @CA (B) = Sari &;.A (~ ) (~ i ) f~ (r i ) .  The functions 
satisfy j d r i  f,,(rj)fn'(ri) = ann, and Sdri &lul where UI is equal 
to the square root of the unit cell volume. We found three to four functions of the type 
discussed in [41] to be adequate which reflects the fact that chargedensity variations occur 
predominantly in the outer regions of the unit cells. 

The problem of calculating the variation of the local magnetization within each unit cell, 
on the other hand, must be treated quite differently. The formation of the local moments 
is a cooperative phenomenon predominantly involving d-electrons and consequently the 

p)(ri) = 
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variation of the [ S p j . ~  (B)] within each unit cell is rather different from the charge variations. 
We assume that the moment changes take on a spatial dependence which is extracted (in 
the form of four magnetic scaling functions f,"tco(r;)) from only the spin- and spatially 
resolved densities of states at the Fermi energy i.e. n,t(J)(ri, E F )  = - Im(Gt($)(rj ,  vi;  E F ) ) ~ .  

This latter choice of scaling property reflects that the changes to the sizes of the moments 
are predominantly due to the changes to the electronic structure around the Fermi energy 
[461. 

(E), 
and p i j , ~  (B) are all connected. This coupling is manifest in the changes to the CPA medium 
which occur as the inhomogeneous chemical potential is applied. These alterations can 
also be dealt within our linear-response theory and account for the cavity-field corrections. 
By considering the lattice Fourier transforms of a;j, pi:,* and f i i j , ~  (E), namely or(q), 
p; (B)(q),  and gA we obtain the following key equations: 

N q )  = Bc(l - C) + BC(1 - c) [ (Se(q)  - Ac)a(q)  + ~ ( $ ' " P ' " ( ~ ) p ~ ( ~ )  + @':"(q)& 
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As shown schematically in the above expressions, the response functions q j ,  

" 
+ $'(q)PA(q) $'(P)LLB(4) - (Fp(q) + AQ)P(q)C(q)l (27) 

f (B) (q )pA(q)  + .;tft (B)(q) f iB(q)  -e ip;g(q)p(q)c(q)  (28) 

P A  (E)(q) = (Ec@)(q) - Arm,)a(q)  + uICHfA (B)(q)Pi(q) + u I C : p ~  ( B ) ( q ) d ( q )  

f ulci5 (B)(q)pA(q) + u l C ; l h  (B) (q )pB(q)  - UIC:G)(q)P(n)C(q) .  (29) 

P ( q )  = (cpA(q) + ( I  - c)pA(q))ul + AQcr(q) is the q-dependent variation from charge 
ncutrality, or effective polarization caused by the short-range order. (AQ is the 'charge 
transfer' in the homogeneously disordered alloy, i.e. the difference in charges when a site 
is occupied by an A atom and when it is then occupied by a B atom.) Cfq) is the lattice 
Fourier transfonn of the Coulomb interaction i/IR, - R, 1. The Onsager cavity corrections 
A ~ ,  A (E), and A r m )  are given by 
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Expressions for all the quantities are detailed in the appendix. They are all calculable from 
the electronic structure of the compositionally disordered, DLM-pa".gnetiC state and hence 
depend on any 'local exchange splitting' that may be present. 

The compositional correlation function a(q)  is obtained from the solution to the six 
equations shown above and has the Ornstein-Zernicke form 

where the 'interchange' energy S(')(q) can be expressed as a sum of three components 

S " ) ( d  = Scc(qj + SuoSs(q) - (AQ)2C(d/(1 + & C ( d ) .  

(34) 
The first term derives from the filling of the electronic states and has been discussed at lengh 
by several authors when spin fluctuation effects are neglected [27,35,47]. It relates to the 
Hume-Rothery electron-per-atom-ratio rule. The other two terms describe the contributions 
to the interchange energy which occur as the charge and local moment magnitudes rearrange 
as a consequence of the atomic short-range order. The second of these two terms describes 
an electrostatic ('charge-transfer'4ike) piece and depends on the Coulomb interaction C(g)  
and an inverse screening length lsc' which is determined by the electronic structure. Such 
effects for alloys in which magnetic effects are unimportant have been discussed in the two 
earlier articles [41,42]. In brief, S(')(qj depends on the nature of the electronic structure 
of the compositionally disordered, paramagnetic state. 

4. Conclusion 

We have presented a theory for the magnetic and compositional correlations in paramagnetic 
alloys based on our 'first-principles' disordered-local-moments (DLMj description of the 
high-temperature, paramagnetic state of a magnetic transition-metal alloy. This work is a 
natural extension of the DLM theory developed by Gyorffy and Staunton el  nl [ 13,201 for 
magnetic metals and by Staunton et al and Johnson er a1 [41,42] for non-magnetic alloys. 
A strength of the present work is that while the statistical mechanics of compositional and 
magnetic fluctuations have been treated in a mean-field framework, the idea of Onsager 
cavity fields has been incorporated so that the diagonal part of the fluctuation-dissipation 
theorem is obeyed. The expression for the static, paramagnetic susceptibility x(p) was 
derived by considering the response of the system to the application of a small external 
magnetic field, and it contains two essential parts. One describes the tendency of the local 
moments to align with the magnetic field, and the other measures the change in the size of 
the moments. The expression for the compositional correlation function a(q), on the other 
hand, was obtained by considering the effect of applying an external 'chemical-potential 
change' to the system, and it has the standard Omstein-Zernicke form. We have emphasized 
how a 'local exchange splitting' of the electronic structure, by allowing for the presence of 
local moments in the paramagnetic state of the compositionally disordered alloy, can have 
a profound effect upon the alloy's tendency to order or phase se,mgate. 
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Appendix A 

Here, we mention a few formal results which will be useful in the derivations for the 
quantities described in terms of electronic structure. Multiple-scattering formalism in the 
notation of Faulkner and Stocks [31] is used to describe the KohnSham Green function 

(G (pi , T I ;  E ) ) $ ,  ,.i = ~ ( Z L  ,& 1 (&)e, ,ai Zlt,J~i) - Z L , ~  (p;C) JL,., ($ )) (AI) 

where Z L , ~ ( T ~ )  is the regular solution of the single-site Schrodinger equation appropriate 
to the ith lattice site, occupied by an a (A or B atom), and JL..(T~) is the irregular 
solution. (.)&,.i denotes an average over all local moment orientations and compositional 
arrangements with the restriction that the site f is occupied by an A (B) nucleus and its local 
moment is directed along Si. represents the scattering path operator [32] and when it 
operates on the wave incident at the site at Rj it gives the scattered wave corning from the 
site at Rj, including all the effects of scattering in between, i.e. 

M F Ling et ai 

L L' 

where tiL describes the angular momentum Lth ( I ,  m )  channel single-site scattering from site 
i and GO,,, the structure constans appropriate to the crystal lattice. In the notations for the 
Green function and scattering matrices above and in the following we use sans-serif bold to 
indicate 2 x 2 spin matrix structure. Sometimes the angular momentum indices, L = l,m, 
are suppressed for brevity. 

The idea behind the CPA is to retrieve the Bloch theorem and consmct a lattice of 
effective complex CPA potentials, with singlesite scattering t matrices tc,i, such that the 
motion of an electron through this lattice approximates the motion of an electron, on the 
average, through a lattice that is randomly occupied by A and B nuclei and where the local 
moment associated with a site i has the chance Pi,u(&) of pointing in a direction i, if the 
site is occupied by an A (B) atom. The multiple scattering in the lattice of CPA scatterers is 
specified by rc,'j. The CPA ansafz [25] is defined by (suppressing the angular-momentum 
labels) 

d i i  P;,A(&)(T'~); , ,A + dGj P j , B ( $ ) ( d i ) ; , , B  (A3) J J , L i i  = 

which in the homogeneously disordered paramagnetic state 
$.ti = T C . i i n  = TC.03n where 

= c/4n) becomes 

rCO3 = ; c ( ( T ~ ~ A  + (T@')&A) + - c ) ( ( T ~ ) + B  + (~")p) (A4) 
in which the t ($) subscript denotes the scattering parallel (anti-parallel) to the local spin 
polarization e^i and t,j = r,L T ~ . ~  is given by the Brillouin-zone integration of the inverse 
of the KKR matrix, 

@) = [n + (tilp)(&) - t ; l n ) ~ ~ . ~ n ] - ~ ~ ~ ~ ~  = DA (B,(&)P9 (A61 
where tA @)(&) describes the scattering from a site i occupied by an A (B) atom whose local 
moment is orientated along 2j. In a 'global' frame of reference, the multiple scattering from 
a site occupied by an A (B) nucleus with local moment in the homogeneously disordered 
paramagnetic state can be written as 

( T i i ) & ~  (B) = $(D~.A (8) + DJ,A (B))ZC'O3fl -t iff .%(D,, - DL.A ( B ) ) T " ~ .  (-47) 
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Appendix B 

An important step in completing'our response-theory formalism with regard to either 
the response of the paramagnetic, compositionally disordered alloy to an external 
inhomogeneous magnetic field ( h 3  or chemical potential {v) is to evaluate St;;, the 
corresponding adjustments to the CPA medium. The CPA condition requires that replacing 
the CPA potential at site i with an A or B atom, on average, produces no further scattering 
in the CPA environment. Mathematically, this condition can be expressed by the following 
matrix equations: 

where X p ( 6 1 )  = [(t;:(6i)-tc;:i)-1 +rc.ii]-l and rc.ii is found from the calculable quantity 
( t ~ , ~ ) .  The CPA ansatz is appropriate for an inhomogeneous occupational and orientational 
probability distribution (Pi,.). Our response theory requires that these matrix equations 
are solved by expanding about the homogeneous SCFKKR-CPA medium, i.e. in terms of 

= C / ~ R  + 8Pi,(6i)) .  After much tedious algebraic manipulation, we find that 
the lattice Fourier transform of the response of the CPA medium at a site i to an applied 
magnetic field at site j ,  hy, L J q )  = cj(Sr,TI/Ghjuf) exp(iq. (Ri -Rj) involves several 
components, h$t(q), hz;(q), hk'&), h z ( q ) ,  and hH(q)  which we shall specify shortly. 
Similarly the response of the medium to an inhomogeneous 'chemical otential', hconc(q), 
can also be expressed in terms of components h&(q), c;r(q), h,;k"(q), h$&"(q), 
h;&"(q), and hp(q)  which are set out below. 

The most important quantity to evaluate in these quantities and which appears in 
expressions for the quantities in sections 2 and 3 are the convolutions 

5: 

R L , X L 2 . L I X L 4 ( q )  = fi;$/"dkz$,,(k)&(k + 4) (W 

(B3) c.00 zc,w T L , ~ L ~ . L , ~ L . ( ~ )  = RLlxLz .Lax l * (q )  - ~ o , L , L ,  O.L ,L? .  

which is the lattice Fourier transform of z y z c , j i .  Here L1 etc refer to both I and m 
angular-momentum quantum numbers and f i ~ z  is the volume of the Brillouin zone. A 
more detailed discussion on the computational aspect of this quantity is given in [41]. The 
components of the response of the CPA medium can now be written 
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where CA = c and Q, = 1 - c. We can now spell out explicitly the key terms. Firstly, part 
of the chemical interchange energy 

is the entire contribution when 'band-energy' only effects are considered, i.e., we ignore 
all charge rearrangement effects. It is the generalization to a DLM paramagnetic alloy of 
the direct correlation function of G y o e  and Stocks who considered Fermi surface and 
band-filling (or e/u) effects only [27]. The remaining t e m  can be expressed in a similar 
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